MPI for Scalable Computing
(continued from yesterday)

Bill Gropp, University of lllinoisat Urbana-Champaign
Rusty Lusk, Argonne National Laboratory

Rajeev Thakur, Argonne National Laboratory

&R, U.S. DEPARTMENT OF
“Ys ENERG

One-Sided Communication

57

One-Sided Communication

= The basicidea of one-sided communication models is to
decouple data movement with process synchronization

— Should be able to move data without requiringthattheremote
process synchronize

— Each process exposes a part of its memory to other processes

— Other processes can directly read from or write to this memory

Global
Address

S
pace Private Private Private Private

Memory Memory Memory Memory
Region & . " Region Region Region

58

Even the
sending
process is
delayed

Delay in
process 1
does not
affect
process O

Process O

i SEND(data)

=

Process O

PUT(data) —

GET(data)

=

>

e
Comparing One-sided and Two-sided Programming

Process 1

< P>Drrmpg

RECV(data)

Process 1

< >rrmg

59

Advantages of RMA Operations

Can do multiple data transfers with a single synchronization
operation

— like BSP model
Bypass tag matching
— effectively precomputed as part of remote offset

Some irregular communication patterns can be more
economically expressed

Can be significantly faster than send/receive on systems with

hardware support for remote memory access, such as shared
memory systems

60

Irregular Communication Patterns with RMA

= |f communication pattern is not known a priori, the send-
recv model requires an extra step to determine how many

sends-recvs to issue

= RMA, however, can handle it easily because only the origin

or target process needs to issue the put or get call

= This makes dynamic communication easier to code in RMA

61

What we need to know in MPI RMA

= How to create remote accessible memory?
= Reading, Writing and Updating remote memory
= Data Synchronization

= Memory Model

62

Creating Public Memory

= Any memory created by a process is, by default, only locally
accessible

— X =malloc(100);

= Once the memory is created, the user has to make an explicit
MPI call to declare a memory region as remotely accessible
— MPI terminology for remotely accessible memory is a “window”

— A group of processes collectively create a “window”
= Once a memory region is declared as remotely accessible, all

processes in the window can read/write data to this memory
without explicitly synchronizing with the target process

63

Remote Memory Access Windows and Window
Objects

Process 0 Process 1
Get
(\\—
\ I
Put
window Process 2 Process 3
> \
\
O [. .
= address spaces = window object

64

Basic RMA Functions for Communication

= MPI Win create exposeslocal memoryto RMA operation by other
processes ina communicator
— Collective operation
— Creates window object

= MPI Win free deallocateswindowobject

= MPI Put movesdatafrom local memoryto remote memory

= MPI Get retrieves datafrom remote memory into local memory
= MPI Accumulate updatesremote memory usinglocalvalues
= Data movementoperationsarenon-blocking

= Subsequent synchronization on window object needed to ensure
operationis complete

Window creation models

Four models exist

MPI_WIN_CREATE

e You already have an allocated buffer that you would like to make
remotely accessible

MPI_WIN_ALLOCATE

e You want to create a buffer and directly make it remotely accessible
MPI_WIN_CREATE_DYNAMIC

e You don’t have a buffer yet, but will have one in the future
MPI_WIN_ALLOCATE_SHARED

e You want multiple processes on the same node share a buffer

e We will not cover this model today

66

MPI_WIN_CREATE

4)

int MPI_Win create(void xbase, MPI_Aint size,
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI _Win *win)

_)

"= Expose a region of memory in an RMA window

— Only data exposedina window can be accessed with RMA ops.

= Arguments:
— base - pointerto local data to expose
— size - size of local datain bytes (nonnegative integer)
— disp_unit - local unitsize for displacements, in bytes (positive integer)
— info - infoargument (handle)
— comm - communicator (handle)

67

Example with MPI_WIN_CREATE

int main (int argc, char ** argv)

{

int *a; MPI Win win;

MPI Init(&argc, &argv);

/* create private memory */

a = (void *) malloc (1000 * sizeof (int)) ;

/* use private memory like you normally would */

a[0] = 1; al[l] = 2;

/* collectively declare memory as remotely accessible */

MPI Win create(a, 1000*sizeof(int), sizeof(int), MPI INFO NULL,
MPI COMM WORLD, &win) ;

/* Array ‘a’ is now accessibly by all processes in
* MPI COMM WORLD */

MPI_Win_free(&win);

MPI Finalize(); return O;

68

MPI_WIN_ALLOCATE

4)

int MPI_Win_allocate(MPI_Aint size, int disp_unit,
MPI _Info info,
MPI_Comm comm, void *xbaseptr, MPI_Win xwin)

_)

= Create a remotely accessible memory region in an RMA window

— Only data exposedina window can be accessed with RMA ops.

= Arguments:
— size - size of local datain bytes (honnegative integer)
— disp_unit - local unitsize for displacements, in bytes (positive integer)
— info - infoargument (handle)
— comm - communicator (handle)
— baseptr - pointertoexposedlocal data

69

Example with MPI_WIN_ALLOCATE

int main (int argc, char ** argv)
{

int *a; MPI Win win;
MPI Init(&argc, &argv);

/* collectively create remotely accessible memory in the
window */

MPI Win allocate(1000*sizeof (int), sizeof (int),
MPI_INFO NULL,
MPI_COMM WORLD, &a, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM WORLD */

MPI_Win_free(&win);

MPI Finalize(); return O;

70

MPI_WIN_CREATE_DYNAMIC

{int MPI_Win_create_dynamic(.., MPI_Comm comm, MPI_Win *win)}

= Create an RMA window, to which data can later be attached

— Only data exposedin a window can be accessed with RMA ops
= Application can dynamically attach memory to this window

" Application can access data on this window only after a
memory region has been attached

71

Example with MPI_WIN_CREATE_DYNAMIC

int main (int argc, char ** argv)

{

int *a; MPI_Win win;

MPI Init(&argc, &argv);
MPI Win create dynamic (MPI_INFO NULL, MPI_COMM WORLD, &win) ;

/* create private memory */
a = (void *) malloc (1000 * sizeof (int)) ;
/* use private memory like you normally would */

a[0] = 1; al[l] = 2;

/* locally declare memory as remotely accessible */
MPI Win attach(win, a, 1000*sizeof(int));

/*Array ‘a’ is now accessibly by all processes in MPI COMM WORLD*/
/* undeclare public memory */
MPI Win detach(win, a);

MPI_Win_free(&win);

MPI Finalize(); return O;

72

Data movement

= MPI provides ability to read, write and atomically modify data
in remotely accessible memory regions
— MPI_GET
— MPI_PUT
— MPI_ACCUMULATE
— MPI_GET_ACCUMULATE
— MPI_COMPARE_AND_SWAP
— MPI_FETCH_AND_OP

73

Data movement: Get

o

/MPI_Get(origin_addr, origin_count, origin_datatype, N
target_rank, target_disp, target_count,
target_datatype,
win)
/
= Move data to origin, from target
= Separate data description triples for origin and target
Target Process
RMA
Window
Local
Buffer

Origin Process

74

Data movement: Put

..)
MPI_Put(origin_addr, origin_count, origin_datatype,
target_rank, target_disp, target_count,
target_datatype,
win)
N /
= Move data from origin, to target
= Same arguments as MPIl_Get
Target Process
RMA
Window
Local
Buffer

Origin Process

75

Data aggregation: Accumulate

Like MPI_Put, but appliesan MPI_Op instead

— Predefined ops only, no user-defined!
Result ends up at target buffer

Different data layouts between target/origin OK, basic type
elements must match

Put-like behavior with MPI_REPLACE (implements f(a,b)=b)

— Per element atomic PUT Target Process

RMA
Window

Local
Buffer

Origin Process

76

Data aggregation: Get Accumulate

= Like MPI_Get, but appliesan MPI_Op instead

— Predefined ops only, no user-defined!
= Result at target buffer; original data comes to the source

= Different data layouts between target/origin OK, basic type

elements must match

= Get-like behavior with MPI_NO_OP

— Per element atomic GET Target Process

RMA
Window

Local
Buffer

Origin Process

77

Ordering of Operations in MPI RMA

= For Put/Get operations, ordering does not matter
— If youdo two concurrent PUTs to the same location, theresult can be
garbage
= Two accumulate operations to the same location are valid

— If youwant “atomic PUTs”, you can do accumulates with
MPI_REPLACE

= Allaccumulate operations are ordered by default

— User can tell the MPI implementation that (s)he does not require

orderingas optimization hints

— You can ask for “read-after-write” ordering, “write-after-write”
ordering, or “read-after-read” ordering

78

Additional Atomic Operations

= Compare-and-swap

— Comparethe target value with an input value;if they are the same,
replace the target with some othervalue

— Useful for linked list creations — if next pointeris NULL, do something

= Fetch-and-Op

— Special case of Get accumulate for predefined datatypes—(probably)
faster for the hardware to implement

79

RMA Synchronization Models
= RMA data visibility

— Whenis a process allowed to read/write from remotely accessible
memory?

— How do | know when data written by process X is available for process Y
to read?

— RMA synchronization models provide these capabilities

= MPIRMA model allows data to be accessed only within an
“epoch”
— Three types of epochs possible:
e Fence (active target)

e Post-start-complete-wait (active target)

e Lock/Unlock (passive target)

= Data visibilityis managed using RMA synchronization primitives
— MPI_WIN_FLUSH, MPI_WIN_FLUSH_ALL

— Epochsalso perform synchronization
80

Fence Synchronization

i i Target Origin
MPI_Win_fence(assert, win) ° °

Collective synchronization model--assumeit ¢ Fence

synchronizes like a barrier

Starts and ends access & exposure epochs

(usually) — |

Fence

Get

Fence
Everyone does an MPI_WIN_FENCE to openan

epoch

Everyoneissues PUT/GET operations to

read/write data

Everyone does an MPI_WIN_FENCE to close
the epoch

81

PSCW Synchronization

Target: Exposure epoch
— Opened with MPI_Win_post
— Closed by MPI_Win_wait
= QOrigin: Access epoch
— Opened by MPI_Win_start
— Closed by MPI_Win_compete
= All may block, to enforce P-S/C-W
ordering

— Processes can be both origins and
targets

= Like FENCE, but the target may allow
a smaller group of processes to access
its data

Target Origin

Post
Start

Get

Wait

82

Lock/Unlock Synchronization

Active Target Mode Passive Target Mode
Post =|-—__ Lock @
7= Start Get
/ Get >
\)- - Complete Unlock @
Wait ==~

= Passive mode: One-sided, asynchronous communication
— Target does not participatein communication operation

= Shared memory like model

83

Passive Target Synchronization

-

int MPI_Win_lock(int lock_type, int rank, int assert,

MPI_Win win)

int MPI_Win_unlock(int rank, MPI_Win win)

o

= Begin/end passive mode epoch

— Doesn’t function like a mutex, name can be confusing

— Communicationoperations withinepoch are all nonblocking

" Locktype

— SHARED: Other processes using shared can access concurrently

— EXCLUSIVE: No other processes can access concurrently

84

When should | use passive mode?

= RMA performance advantages from low protocol overheads
— Two-sided: Matching, queuing, buffering, unexpected receives, etc...

— Direct support from high-speed interconnects (e.g. InfiniBand)

= Passive mode: asynchronous one-sided communication

— Data characteristics:
e Big data analysis requiring memory aggregation
e Asynchronous data exchange
e Data-dependent access pattern
— Computation characteristics:
e Adaptive methods (e.g. AMR, MADNESS)

e Asynchronous dynamic load balancing

= Common structure: shared arrays

85

